

Behnam Amiri

ans.dailysec.ir

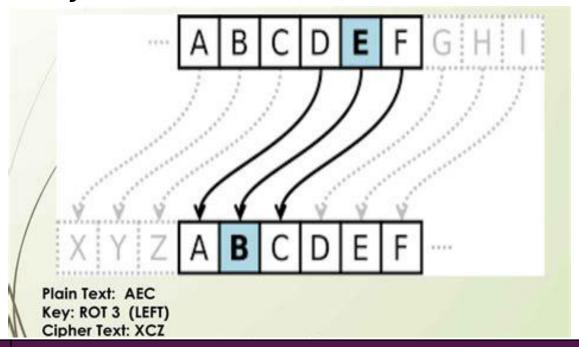
aNetSec.github.io

Cryptography

Why Cryptography?

Cryptography for Confidentiality

Basics

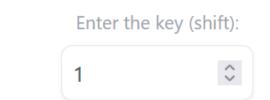

- Plaintext: Original message
 - Plaintext= I love you
- Ciphertext: Encrypted message
 - Ciphertext= 19 de 0b a3 ef 08 12 cf b5 7c
- Cipher: algorithm for transforming plaintext to ciphertext
 - Cipher= AES-128
- Key: info used in cipher known only to sender/receiver
 - Key= myEncryptionKey
 - Key= 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

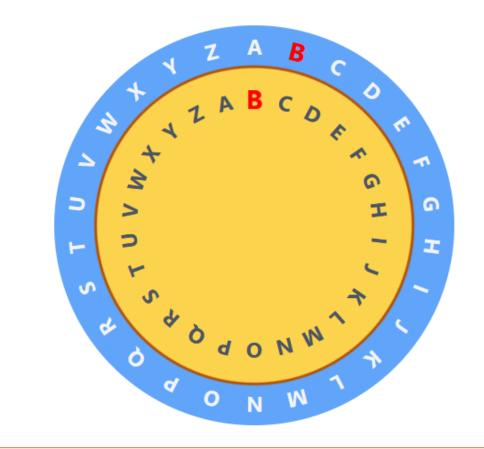
Basics

- Encrypt: converting plaintext to ciphertext
- **Decrypt**: recovering plaintext from ciphertext

Caesar Cipher

- The Caesar Cipher, also known as the Caesar Shift Cipher
- Belongs to the category of substitution ciphers.
- Julius Caesar, who used this Caesar Cipher technique to encrypt his military commands.





Caesar Cipher

https://caesar-cipher.com/caesar-cipher-wheel

Breaking Caesar Cipher

- How we can decrypt Caesar Cipher?
 - Encrypted text: jgnnq
 - Encrypted text2: dwwdfn wlph wrpruurz 8
- Try different numbers:
 - Try 1: jgnnq -1-> ifmmp
 - Try 2: jgnnq -2-> hello
- We can use auto tools
 - https://caesarcipher.org/decoder

Brute Force

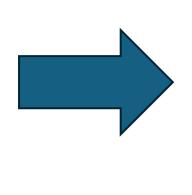
- A hacking method that uses trial and error to crack
- In Caesar Cipher we must test just 25 key.
 - If check of each key take 1 second
 - Check all key take 1*25=25 second
 - In average it takes 25/2=12.5 second to decrypt
 - It's a weak algorithm

Brute Force

Table 4.5 Average Time Required for Exhaustive Key Search

Key Size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ Decryptions/s	Time Required at 10 ¹³ Decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	$2^{55} \text{ ns} = 1.125 \text{ years}$	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ns} = 5.3 \times 10^{21} \text{years}$	$5.3 \times 10^{17} \mathrm{years}$
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ns} = 5.8 \times 10^{33} \text{years}$	5.8×10^{29} years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ns} = 9.8 \times 10^{40} \text{years}$	9.8×10^{36} years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ns} = 1.8 \times 10^{60} \text{years}$	1.8×10^{56} years
26 characters (permutation)	Monoalphabetic	$2! = 4 \times 10^{26}$	$2 \times 10^{26} \text{ns} = 6.3 \times 10^9 \text{years}$	$6.3 \times 10^6 \mathrm{years}$

Security of encryption


- **Unconditionally Secure:** if the ciphertext does not contain enough information to determine uniquely the corresponding plaintext, no matter how much ciphertext is available.
 - no matter how much time an opponent has, it is impossible for him/her to decrypt the ciphertext
 - With the exception of a onetime pad, there is no encryption algorithm that is unconditionally secure.
- Computationally Secure: if two criteria are met
 - The cost of breaking the cipher exceeds the value of the encrypted information.
 - The time required to break the cipher exceeds the useful lifetime of the information

My Encryption

Clear text: play football in 16

Key: Use Even cells

1	2	3
4	5	6
7	8	9

1	play	3				
football	5	in				
7	16	9				

My Encryption

- Decryption
 - Key: Use Even cells
 - Clear text: play football in 16

read	play	Ping pong
football	buy	in
12	16	19

Substitution Cipher – 1 Character

Plain	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0	р	q	r	S	t	u	V	w	х	у	Z
Cipher	D	Ε	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z	Α	В	С

- Examples
 - Playfair Cipher
 - Hill Cipher

Cryptoanalyses

- Brute force
- Frequency Analyze

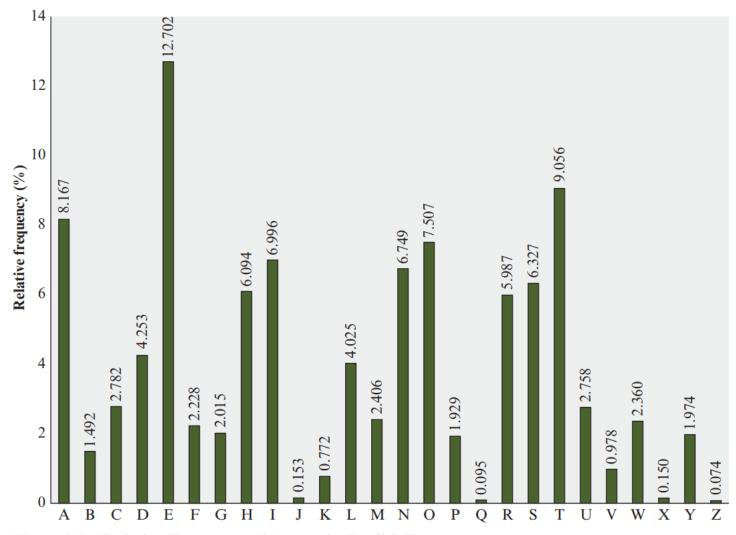


Figure 3.5 Relative Frequency of Letters in English Text

Classic Encryptions

- Two main approach
 - Substitution like Cesar
 - Transposition
- Transposition
 - performing some sort of permutation on the plaintext letters
 - Decryption is Harder

Transposition Example

- Example:
 - the key is 4312567
 - To encrypt, start with the column that is labeled 1, in this case column 3.
 - Write down all the letters in that column.
 - Proceed to column 4, which is labeled 2, ...

```
Key:
    4 3 1 2 5 6 7
Plaintext:
    a t t a c k p
    o s t p o n e
    d u n t i l t
    w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```

Symmetric Encryption

Encryption & Decryption keys are same

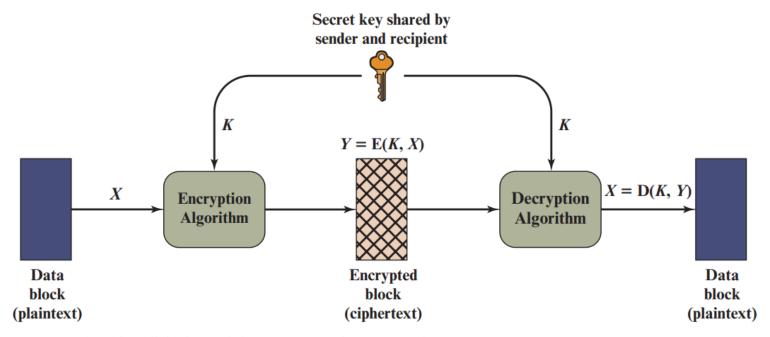


Figure 3.1 Simplified Model of Symmetric Encryption

Symmetric Encryption

 Need secure channel for key exchange

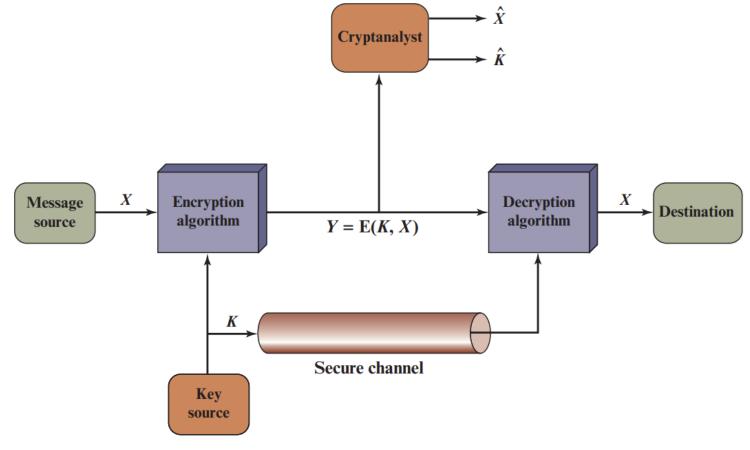


Figure 3.2 Model of Symmetric Cryptosystem

Usage in internet

- I want encrypt my Gmail emails with symmetric algorithm
 - 1. Go to Google company 🛪 🔵
 - 2. Give my key to them 📩
 - 3. They encrypt my emails with this key

Usage in internet

- Problems
 - 1. So many letters!
 - 2. Slow encryption
 - 3. Hard to change my key

What is the solution?

- What if, we can encrypt message with Key1 & Decrypt with Key2 ?!
- Key1 and Key2 are different.
- Let's think about it. 🔒